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Summary. The geometrical structure of linear chains is discussed with reference to 
procedures for treating both electronic and nuclear motion and illustrated with 
reference to recent density functional calculations. 
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1. Introduction 

In the now nearly classical text on solid state theory by Peierls [1] there is one 
Section [-5.3] which has been quoted more than anything else in that book. The 
topic discussed there is the question which geometric structure in a one-dimen- 
sional lattice has the lowest energy, a metallic one with uniform distances, or 
a dimerized or in general a "polymerized" geometry with insulating properties. 
Peierls primarily discusses the modification of the band structure which can be 
expected to occur in a linear chain with uniform internuclear distances if the chain 
is dimerized, i.e. if alternating internuclear distances are introduced. Sheer sym- 
metry reasons will give rise to a gap in middle of the band, corresponding in k space 
to the line delimiting the border between the first and second Brillouin zone of the 
dimerized structure. The one electron energies of the states with highest wave 
numbers in the first Brillouin zone will thereby be lowered. If the total energy of the 
system were equal to the sum of the occupied one electron energies that would lead 
to a lower total energy for a system with an originally half-filled band. The degree 
of filling of the band plays an important  part  in this connection. Thus if all other 
factors are unchanged, the dimerized conformation would have a lower energy. 

Peierls himself is much more careful than many of those who quote him: "It is 
therefore likely that a one-dimensional model could never have metallic properties. 
However, a complete discussion of  this question would have to allow for the fact that, 
as was stressed in Section 1.2, the adiabatic approximation is not valid in the case of 
a metal, so that the energies calculated with the nuclei at rest cannot be used in 
physical arguments without 9rear care." 

The situation just described is referred to as the Peierls theorem or more 
commonly the Peierls transition. The latter term is particularly misleading, since 
no mention has been made of an actual physical or chemical phenomenon. If in 
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a theoretical model one makes an assumption about the geometrical structure of 
a system, and if a calculation shows that another structure has a lower energy, this 
may be an indication that the actual geometrical structure is of the second type, 
provided the calculation is reasonably realistic. Nothing can be claimed about an 
actual transition in an experimental situation, though. In his description of the 
similar Jahn-Teller effect Ballhausen [2] has characterized the semantic aspect of 
this situation very appropriately: This statement does not mean that the molecule is 
formed possessin9 a degenerate state, immediately discovers this, and then proceeds to 
distort". To use the term "transition" is therefore quite misleading [3]. 

The term "Peierls theorem" is more motivated. In order to invoke a theorem 
one must be very careful, though, to check that the conditions under which it is 
valid, are satisfied. In this paper we illustrate several aspects of "Peierls theorem" 
with reference to a set of recently carried out band calculations combined with 
geometry optimization for certain linear chains of the first row atoms [-4, 5]. 

A little more explicitly Peierls' arguments are as follows in a case where a dimerized 
situation is compared to a geometry with uniform distances. First-order perturbation 
theory is used to calculate the non-diagonal matrix element associated with "dimeriz- 
ing" displacements of the nuclei, with respect to the two Bloch functions with wave 
numbers +k  and - k  which have the same energy in the uniform case. The 
displacements and therefore the perturbation have the periodicity of the dimerized 
lattice, which implies that this matrix element is different from zero. Consequently, 
such a perturbation opens up gaps in the bands at the "new" zone boundaries. 

What has just been summarized can certainly be termed a theorem. Whether 
this will lead to a lowering of the total energy is however a more complicated 
question. To begin with the total electronic energy is not necessarily the sum of the 
occupied one-electron energies - whether it is or not depends on the particular 
approximation chosen. Secondly, the total energy also involves the nuclei, and even 
if we stay at the Born-Oppenheimer approximation the change in "elastic" energy 
due to the nuclear displacements must also be taken into account. As a result some 
linear chains are metallic and others are insulating. 

With the present paper we make an attempt to relate "Peierls' theorem" to 
various ways of describing the interaction between electronic and nuclear motion, 
both as treated traditionally and in a radically different, recently developed time- 
dependent approach. It is quite clear that this coupling - termed vibronic for 
molecules and electron-phonon for solids - is the central issue for "Peierls' 
theorem". In Section 2 we review a general approach to this problem in terms of 
mean field densities and fluctuations for both nuclei and electrons. That formula- 
tion is useful for setting a common stage for phonons and electrons and their 
interactions. In Section 3 we describe the time-dependent approach Electron 
Nuclear Dynamics [END],  which offers a general framework and very promising 
practical procedures for actual calculations of the interaction between electronic 
and nuclear motion at many different levels of approximation. Against this back- 
ground we review in Section 4 some of the density functional calculations for linear 
and zig-zag chains with special reference to their geometric structure and its relation 
to their band structure. In the final section we summarize our points of view. 

2. Mean fields and fluctuations 

The "Peierls theorem" touches a central aspect of the quantum theory of matter, 
the interaction between electronic and nuclear motion. So far most quantum 



Interaction between electronic and nuclear motion 313 

chemical calculations are aimed at getting approximate solutions of the time- 
independent Schr6dinger equation within the Born Oppenheimer approximation. 
In other words for a frozen nuclear configuration variation or perturbation 
calculations yield an approximate total wave function and/or corresponding total 
energy. In principle a set of such calculations for different nuclear conformations 
lead to a potential energy surface, and one or several minima on that surface 
determine the possible more or less stable nuclear conformation(s). When a poten- 
tial energy surface is available it is also possible to use either classical or 
quantum mechanics to study small vibrations around the equilibrium positions of 
the nuclei. 

This well-known picture lacks an essential ingredient, namely the 
immediate interaction between electronic and nuclear motion. In principle we 
should be looking for approximate solutions of the SchriSdinger equation for 
all the particles in the system, nuclei and electrons. Just as in the traditional 
solutions the interactions between electrons and between moving electrons 
and fixed nuclei are more or less accounted for, in the more general case we 
should account for the interactions between movin9 nuclei and moving electrons. 
The static aspect of the picture based on the potential energy surface concept 
shows up in the fact that the force acting on a nucleus - the negative of the 
gradient of the potential energy - is a function of the nuclear coordinates only. 
For  that reason there is no feedback either from the electronic or the nuclear 
motions. 

The term "total energy" usually refers to the expectation value of the total 
electronic Hamiltonian including the nuclear repulsion, but not the nuclear kinetic 
energy. A set of such total energies for different nuclear geometries form a potential 
energy surface [-PES]. In traditional time-independent theory PES constitutes the 
central concept for combining electronic and vibrational structure. Whether a PES 
has been calculated explicitly from the electronic structure (a very rare situation), 
or its existence is just taken for granted and it is characterized by some parameters 
to be determined semi-empirically, the nuclei are described as "moving" on that 
surface. In other words PES constitutes the potential for the nuclear motion, 
classically or quantum mechanically. A reasonably realistic description of 
a "Peierls transition" should involve an attempt to solve the equation for this 
nuclear motion. 

The term "vibrational structure" normally refers only to small vibrations 
around nuclear equilibrium positions. In such a case a harmonic approximation of 
PES near a minimum yields a description in terms of independent harmonic 
oscillators or equivalently of non-interacting phonons. If terms of order higher 
than two are included in the expansion of the potential, anharmonic effects can be 
taken into account, which in a quantum mechanical treatment is expressed by the 
term phonon-phonon  interaction. 

Electron-electron and electron-phonon interactions must also be included. 
In the next section we will briefly describe a time-dependent method which 
permits all these interactions to be taken into account in a very explicit way, at 
various levels of approximation. In order to appreciate how that is done it is 
instructive to first consider a more traditional approach in a way inspired by Allen 
et at. [6]. 

We study a monatomic crystal with nuclei of charge Z. The nuclear mass is 
denoted by M and the electronic mass by m. We use atomic units but write out m, 
which is then equal to 1, in order to emphasize the distinction between electronic 
and nuclear kinetic energy. We thus do not work with any Born-Oppenheimer 
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approximation. The total Hamiltonian is written as 

HT°t" = ~ 1  ~ P 2 q - Z  Bt~'K ~ f  2 M  &t l 2m . p2  + dv dr '  Ptot(r)v(r - r')P,ot(r'), (1) 

where 

1 
v(r  - r ')  - - -  (2) 

I r - r ' l  

denotes the Coulomb interaction. The total density operator 
BK BK 

Ptot(r) = Z 2 6(r  --  R , )  - 2 6(r  - ri), (3) 
l i 

is the sum of a lattice density operator 
BK 

DL(F) = Z Z ~(F -- Rl) (4) 
1 

and an electronic density operator 
BK 

P el(r) = -- 2 ¢~(r --  ri). (5) 
i 

The vector R~ = ! + uz, denoting the nuclear positions, is written as a sum of the 
equilibrium position 1 and a displacement vector u~. Combining Eqs. (1) and (3) we 
retrieve the usual expression for the potential energy operator, 

z ! 2  1 
2 1 ¢ r l R ~ - - - - R r l  ~ I R z ~ l  + 2 , ~  Irg - rjl" (6) 

Using the form (1) for the Hamiltonian we can introduce mean-field theory 
concepts for both nuclei and electrons and build up hierarchies of solutions. 

With small vibrations the mean positions of the nuclei are the equilibrium 
positions, (R~) -- I, so that the mean lattice density operator is 

BK 
PML(F) = ( p L ( r ) )  = Z Z 6(r - 1). (7) 

t 

The fluctuation operator 

PFL(r) = pL(r) -- PML(/'), (8) 

then represents the departure from the mean-field density of the lattice. 
Similarly, we introduce a mean-field density for the electrons: (pel(r)>. If this 

expression is interpreted as the quantum mechanical expectation value of the 
electronic density operator with respect to an exact or approximate wave function, 
it can be written in terms of the corresponding reduced first order density matrix 
y(xlx') = ?(r, (it ' ,  ('): 

(pel (r)  ) = -- . f  d x l  6(r  - rl)7(xl Ix'0 

= - ~ d v l  6 (r  - r O N ( r l ,  rl)  
,d 

= - N ( r ,  r )  = - . ( r ) .  ( 9 )  



Interaction between electronic and nuclear motion 315 

Here N denotes the number density matrix 

N ( r , / )  = fdC ~(,, or / ,  c) (10) 

and its diagonal element p(r) = N(r,  r) is the density in the chosen state. As in the 
lattice case there is an electronic density fluctuation operator, 

PEek(r) = poi(r) -- p(~). (1 l) 

Using Eqs. (8) and (11) we write the potential energy part of the Hamiltonian (1) as 

f dv dr '  v(r - r '){2pe,(r)[PML(r') -- p(r')] + 2pFL(r)[PML(r') -- p(r')] 

+ PML(r)PML(r') -- p(r)p(r ' )  + PFL(r)PFL(r') 

+ 2pVL(r)pF¢l(r') + pwl(r)pv~l(r')}.  (12) 

The Hamiltonian can then be written as a sum of four parts which will allow for 
a certain reinterpretation of its contents 

HTot -=/ /e l  + Hph + Hint --~//extra (13) 

with 

1B~ f Hei = ~mm ~ p{ + dv dr' Pel(r)/)(r - -  P ' ) [ P M L ( r ' )  - -  p(r')], 

1S~ f Hph ~ p 2  + dv dr '  PvL(r)v(r -- r')[PML(r') -- p(  )~, 

,f Hin t : ~ dv dv' pF(r)v(r -- r ')pv(r') ,  

1; 
Hextr a = ~ dv dr'  v(r -- r'){pML(r)PML(r') - p(r)p(r ' )} .  

Here we have introduced the notation 

pF(r) = PFL(") + p~o,(r) 

(14a) 

(14b) 

(14c) 

(14d) 

(15) 

1~ Z 2 if p(r)p(r') (16) 
Hextra --~- ~ l,r [l ~- l ,  I ~ dv dv' [r -- r'[ " 

for the total fluctuation operator Ptot(r) - < , O t o t ( / ' ) > .  

The electron operator He1 describes the interaction between the electrons and 
the mean field of all other particles, but no explicit interparticle interactions. The 
"phonon operator", Hph, describes the interactions between the lattice fluctuations 
and the mean field of all other particles. All explicit interactions are contained in 
Hint. The remaining term, Eq. (14d) is actually a constant, but an essential one, 
since it forms part of the Madelung energy: 
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Both the electron and the phonon Hamiltonians are sums of one-particle 
Hamiltonians, 

Hel = E he l , i ,  (17a) 
i 

2m ]r i-l----~[ + dr' ]r-r '[ '  (17b) 
, I 

H p h  = ~ hph,1, (18a) 
l 

hph ,  l = - ~  q- Z dv pM(r) - -  r l  l! - r[ " 

Here pM(r) = ( P t o t ( r ) )  is the total mean density operator. 
The potential in the one electron Hamiltonian (17b) apparently describes the 

electrostatic interaction between a certain electron and the nuclei at their mean 
positions as well as its interaction with the mean-electron density. In other words 
(17b) is a Hartree Hamiltonian. 

The "phonon operator", Eq. (18b), describes the interaction between the mean 
density of all the particles and the difference between the potential due to a dis- 
placed nucleus and one at its equilibrium position. It is important to notice that in 
the present formulation a particular nucleus interacts only with the mean density, 
not explicitly with the other nuclei. A Taylor expansion of the potential in Eq. (18b) 
in terms of the small displacements gives 

1 1 U l . ( l - r  ) 3 [ u l . ( 1 - r ) ]  z - [ u l l Z l l - r [  2 
+ + - - - ,  (19) 

[Rz  - -  r l  - I1 - -  r[  II  - r[  3 211  - r l  5 

which yields a harmonic approximation of the Hamiltonian (18b), 

p2 1 ~'Y': 
hph,l = ~-M + ~ ; K~)~ul~ua. (20) 

This expression can now be treated classically or quantum mechanically. In 
either case it describes a set of independent harmonic oscillators with frequencies 
independent of the wave vector. The lack of dispersion is due to the fact that 
no interaction between displacements on neighboring nuclei has been taken 
into account, even though the force constants K ~  represent interaction 
between different nuclei in their equilibrium positions. This is sometimes 
characterized by the term "Einstein oscillators". A more realistic description of 
phonons can be obtained by a different partitioning of the primary Hamiltonian 
(1). 

The traditional way of treating electrons and phonons as two separate 
"worlds" and then taking their interaction into account as a perturbation is 
obtained if the approach sketched here is followed up. Solutions of the electronic 
problem at whatever level of approximation chosen yield (among other things) 
a mean electron density which can be used to construct a potential for the 
nuclear motion. The forces on the nuclei then only depend on the positions of the 
other nuclei and there is no immediate mutual interaction between nuclei and 
electrons. 
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3. Electron nuclear dynamics 

A radically different way of approaching this fundamental problem is offered by the 
recently developed Electron Nuclear Dynamics [END]  method [7-15]. In END 
approximate solutions of the time-dependent Schr6dinger equation for all particles 
in the system are obtained by means of the Time-Dependent Variation Principle 
[TDVP]  [16-18]. Applied to the type of problem discussed in the present paper 
this means that the mutual interaction between electronic and nuclear motion is 
built into the treatment from the very beginning. The forces on the nuclei then 
depend on time-dependent electronic and nuclear parameters. 

Within the general END framework a number of options are available. The 
nuclei can be treated classically or quantum mechanically. For  the electrons one 
first chooses a particular level of approximation for the total wave function. That 
function then depends on a number of time-dependent complex parameters, which 
we denote here by the compound notation z. If we work with classical nuclei, 
the nuclear positions, R, and their momenta, P, serve as nuclear time-dependent 
parameters. 

In such a situation TDVP leads to the following set of coupled first-order 
differential equations for the four sets of parameters, 

iC & _ OE --iC* &* - ~E (21a) 
~?t &* '  & & ' 

0R c~E 0P ~E 
(21b) 

& gP'  8t O R  

Here E is the total energy including the nuclear kinetic energy. If the total wave 
function is a single determinant, written as Iz) to emphasize its crucial dependence 
on the complex parameters z, the matrix C is related to the normalization of that 
determinant as follows: 

S(z*, z) = (zlz),  (22a) 

02 In S 
C~p - c~z* c~za" (22b) 

The total energy E depends on the nuclear positions Rz both via the Hamiltonian 
and through the total wave function. Like E its gradient with respect to the nuclear 
positions also depends on the electronic parameters z. That guarantees immediate 
response to the nuclear motion from the electronic system through Eqs. (21b). 
Similarly, in the first two sets of equations, (21a), the derivatives o r e  with respect to 
the electronic parameters depend both on electronic and nuclear parameters. That 
in turn guarantees immediate response to changes in the electronic parameters. 

The coupled equations of motion, Eq. (21), imply 

0E 
~t 0. (23) 

In other words, use of the solutions of the equations of motion guarantees a total 
energy which is constant in time. 

In the special case when there are no electronic parameters, or in other 
words the electrons are "frozen" in a reference state, the equations of motion 



318 J-L. Calais 

reduce to 
OR dE dP dE 
& - dP' & - d R  (24) 

The total energy now only depends on the nuclear parameters. If we also freeze the 
nuclei, we have 

dP 
P = d-~- = O, (25a) 

dR dE 
& = 0, ~3--R = 0. (25b) 

Thus the only points on the potential energy surface E ( R )  that are compatible with 
the equations of motion, are the extremum points. From this point of view the 
concept of a potential energy surface is debatable even in the special situation 
where it is normally used. 

Assuming that Eqs. (25) yield a set of equilibrium positions Re, we thus have 

In the neighborhood of these equilibrium positions we expand the energy in the 
displacements Rt - Rz, = u~, 

1 _ ( d2E '~ 

Having located the equilibrium positions we can use the equations of motion 
Eq. (24) for moving nuclei to study small vibrations around these positions, 

~3Rt~ _ dut~ _ Pl~ dPt~, _ ~ ( d2E \ ur#.  (28) 

If finally the electronic reference wave function is replaced by a more general 
function depending on a set of electronic parameters z, we can use the full set of 
coupled equations of motion, Eq. (21), to investigate the immediate mutual coup- 
ling of electronic and vibrational structure. In practice this means explicit functions 
R•(t) and Pj( t )  for the nuclear positions and momenta, as well as electronic 
parameters z* (t) and z=(t), which can be for example the molecular orbital coeffi- 
cients of a chosen set of basis functions. Thus one can follow explicitly in time how 
the dynamical molecular orbitals vary with the nuclear geometry and momenta. 

The END procedure has been applied - so far primarily for illustrative pur- 
poses - to a monatomic linear chain [19] and a zig-zag chain of nitrogen atoms 
[20]. In both cases a PPP  type Hamiltonian [21] was used. The results demon- 
strate how an END analysis can be carried out for such systems, and show 
explicitly how the coupling between electronic and nuclear motion is brought in. 
This is only the beginning of a very promising development. 

4. Uni form and dimerized geometries in linear chains of  some 
first row atoms 

In this section we review a set of calculations of energy bands and geometric 
structures for systems, which demonstrate certain aspects of "Peierls' theorem". 
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This type of calculations constitute a kind of "zeroth-order" approximation to the 
more advanced developments sketched in the previous sections. 

In a strictly linear chain of atoms the nuclear equilibrium positions are re- 
stricted to one direction which we denote as the z-axis, 

R~ = R~ez. (29) 

A chain with uniform internuclear distances a has RI = la and the equilibrium value 
of a is given by 

0E 
- -  = 0 for all l, (30) 
~R~ 

i.e. 

~3E I ~3E 0a ~ 0, (31) 

which holds for a = ae. 
A dimerized chain has two kinds of internuclear distances, 

R2j-1 = (2j - 1)a; R2; = 2ja + u. (32) 

The equilibrium values of a and u are given by 

6E 6E 
- 0 for all j. (33) 

~R2j-  1 OR2j 

These equations imply 

0E 0E ~E 
0~ = (2j - 1) ~-R-zj- 1 + 2j ~ = 0, (34a) 

~E ~E 
= 0 (34b) 

6~U ~R2j 

with solutions a = ae and u = ue. 
Thus a "Peierls transition" occurs if u~ # 0. A "real" Peierls transition would 

involve two different physical situations and thus two different energies. 
The framework introduced here can serve to describe a set of calculations 

carried out recently for both strictly linear and zig-zag chains of some of the atoms 
in the first row of the periodic system [4, 5]. Using the particular version of the 
L M T O  method developed for helical polymers 1-22, 23] we have carried out band 
calculations for a number of linear chains with uniform and alternating inter- 
nuclear distances, of hydrogen, lithium, boron, carbon and nitrogen atoms. These 
calculations are based on density functional theory and total energies were cal- 
culated according to the procedures developed within that theory. Based on these 
computat ions a numerical and graphical search for solutions of Eqs. (31) and (34) 
was carried out. 

In the hydrogen chain with uniform distances a broad band is half-filled with 
the Fermi energy about  7 eV above the bot tom of the band. Dimerization opens 
up a gap at the Fermi energy and the total energy is lowered. In this particular case 
the lowest energy actually occurs for a "molecularized" state, when the chain has 
dissociated into non-interacting hydrogen molecules. 

The lithium chain behaves according to Peierls' description. For  uniform 
distances a 2 eV wide valence band of o--type is half-filled. Dimerization leads to 
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band gap of about 0.4 eV and a total energy lowering of about 0.02 eV per diatomic 
unit. The two internuclear distances, 4.75 and 5.30 Bohr bracket the distance 5.05 
Bohr in the diatomic lithium molecule. 

In a uniform boron chain the 5.17 eV wide o--band is completely filled. A doubly 
degenerate Tt-band is partially filled to one fourth of its capacity. Upon dimer- 
ization the total energy increases. A gap opens up between the two halves of the 
o.-band, but nothing happens to that part of the 7t-band which is occupied. This 
explains why it does not pay for this chain to dimerize. The energy gain in the lower 
half of the o.-band is lost in the upper half, since both are occupied. The bond length 
in the chain, 2.90 Bohr, can be compared to the 3.01 Bohr in the diatomic boron 
molecule. 

In a uniform carbon chain the valence o.-band of width around 6.5 eV is again 
completely filled. The rt-band is now half-filled with a Fermi energy about 4.2 eV 
above the bottom of the band. In this case it pays for the chain to dimerize, since 
the gap which opens up in the ~-band occurs at the Fermi level. Dimerization leads 
to a lowering of the total energy of about 0.25 eV per diatomic unit, accompanied 
by a re-band gap of 0.79 eV and a slightly larger gap in the o.-band. 

In the uniform nitrogen chain the completely filled o--band has a width of 
around 7 eV. The re-band is now filled to 3/4 of its capacity with a Fermi level 
8.71 eV above the bottom of the ~-band. For  that reason the gaps which open up 
upon dimerization do not occur at the Fermi level. As a result the strictly linear 
nitrogen chain has its lowest energy with uniform internuclear distances of 
2.34 Bohr, i.e. slightly less than the nitrogen double bond distance. 

This situation for the nitrogen chain is modified if another degree of freedom is 
introduced, so that a zig-zag chain is obtained [5]. The re-band is then no longer 
degenerate. Instead, in a chain with uniform distances we have two completely 
filled o--bands and one half-filled non-degenerate rt-band. Dimerization opens up 
gaps in all three bands, ~ 1.6 eV in the lowest o.-band, ~0.4 eV in the second 
o.-band, and ~ 1.2 eV in the 7t-band at the Fermi level. The optimized bond lengths 
were found to be 2.50 and 2.67 Bohr, to be compared with 2.37 Bohr for a nitrogen 
double bond and 2.74 Bohr for a nitrogen single bond. 

5. Conclusion 

The numerical results reported in the previous section have been obtained 
with L M T O  calculations, i.e. from a particular way of solving the Kohn-Sham 
density functional equations. This particular procedure has been shown to yield 
quite reliable results for a large number of polymers [24]. The results for the linear 
chains corroborate that statement, since they are entirely in line with chemical 
intuition. 

These calculations have been included in the present paper as illustrations of 
several aspects of what might be called "Peierls' theorem". This theorem should not 
be misunderstood to simply claim that systems with one-dimensional lattices 
cannot be metallic. The character of the bands and the degree of filling play an 
essential part. Thus a careful investigation of a traditional kind can yield very 
valuable information about the geometric structure as related to the band struc- 
ture. Still this cannot be the last word since the detailed mutual interaction between 
electronic and nuclear motion is neglected. A thorough understanding of the 
problems associated with "Peierls transitions" requires a more detailed treatment 
of both electrons and nuclei and of their interaction. The method of Electron 
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Nuclear Dynamics, which has been sketched in section III of the paper, offers 
a number of possibilities to achieve that goal. 
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